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Abstract
The vacuum expectation value of the electromagnetic energy–momentum
tensor between two parallel plates in spacetime dimensions D > 4 is calculated
in the axial gauge. While the pressure between the plates agrees with the global
Casimir force, the energy density is divergent at the plates and not compatible
with the total energy which follows from the force. However, subtracting the
divergent self-energies of the plates, the resulting energy is finite and consistent
with the force. In analogy with the corresponding scalar case for spacetime
dimensions D > 2, the divergent self-energy of a single plate can be related
to the lack of conformal invariance of the electromagnetic Lagrangian for
dimensions D > 4.

PACS numbers: 11.10.Kk, 12.20.−m, 12.20.Ds

Two parallel, metallic plates separated by the distance L in vacuum will interact due to the
modifications of the quantum fluctuations of the electromagnetic field caused by the boundary
conditions at the plates. The resulting force was first calculated by Casimir [1] who found it
to be given by the attractive pressure P = −π2/240L4. Using the conformal symmetry of the
electromagnetic field in D = 4 spacetime dimensions, Brown and Maclay[2] later obtained the
vacuum expectation values of all the components of the electromagnetic energy–momentum
tensor

Tµν = FµαFα
ν − ηµνL (1)

where L = −(1/4)F 2
αβ is the standard Lagrangian. While these expectation values were

constant between the plates, the corresponding fluctuations of the separate electric and
magnetic fields were found by Lütken and Ravndal to be in general non-constant and actually
divergent as one approaches one of the plates [3]. These divergences are caused by imposing
ideal boundary conditions valid for arbitrarily small wavelengths of the field. A physical
boundary would only affect fluctuations down to a finite wavelength which is expected to
result in an increasing, but finite value of the fluctuations near the plates. The quantitative
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effects of such more realistic boundary conditions have been investigated during the last few
years but a complete and satisfactory description is still lacking [4].

Casimir forces in spacetimes with dimensions D > 4 were first systematically calculated
by Ambjørn and Wolfram [5]. For the electromagnetic field between two parallel hyperplanes
with separation L, the attractive pressure was found to be

P = −(D − 1)(D − 2)
�(D/2)ζR(D)

(4π)D/2LD
(2)

where the factor D −2 is the number of physical degrees of freedom in the field resulting from
gauge invariance. If the energy density between the plates is constant, it would just be this
pressure divided by the factor D − 1. This is the case when D = 4 and it is of interest to see if
it holds also in the more general case D > 4. For this purpose we calculate in the following the
separate fluctuations of the electric and magnetic components of the field which then allows
us to find all the vacuum expectation values of the components of the energy–momentum
tensor (1).

Today these quantum effects could be of relevance for stacks of parallel branes where
the electromagnetic field is replaced by one or more of the Abelian Ramond–Ramond fields.
Any divergent energy density would then have serious implications for the stability of such
configurations due to the resulting large gravitational interactions.

The electromagnetic field tensor Fµν = ∂µAν −∂νAµ in D = d + 1 spacetime dimensions
has d electric components Ei = F0i and d(d − 1)/2 magnetic components Bij = Fij . For
the geometry under consideration, the simplest and most natural choice of gauge is the axial
gauge nµAµ = 0 where the unit D-vector nµ is normal to the plates. Taking this along the
z-axis, we thus have Az = 0. The component A0 is no longer a free variable, but depends on
the others via the Maxwell equation ∂iF

i0 = 0. It gives A0 = −	−1∂iȦi where the operator
	 = ∂2

i . There are thus D − 2 independent degrees of freedom described by the spatial field
components Ai where i �= z. The full Lagrangian then follows as

L = 1

2

∫
ddx[Ȧi(δij − ∂i	

−1∂j )Ȧj − Ai(∂i∂j − δij	)Aj ] (3)

after a few partial integrations and neglecting surface terms.
In order to quantize the system, we must solve the classical wave equation following from

the Lagrangian. For this purpose we impose the boundary condition nµFµν = 0 at the plates.
This is the same as for the MIT quark bag where it had a physical justification [6]. Here it
is just taken for convenience. In the axial gauge it gives ∂zAi = 0 at the plates which is the
Neumann boundary condition for each physical field component Ai(x) = Ai(t; xT , z). We
then have the general mode expansion

Ai(t; xT , z) =
√

2

L

∞∑
n=1

∫
dd−1kT

(2π)d−1
Ain(t, kT ) eikT ·xT cos

(nπz

L

)
(4)

which satisfies the wave equation and the boundary conditions. The factor
√

2/L is a
normalization factor. In the mode sum we have dropped a term with n = 0 since it will
not contribute to any physical results after regularization.

Quantization can now be done in the standard way. We introduce orthonormal polarization
vectors eλ normal to the wavevector kT and a longitudinal polarization vector eL along this
direction. The coordinate components Ain of the field are then replaced by the polarization
components (Aλn,ALn). After quantization at t = 0 the transverse components can then be
written in the standard form as

Aλn(kT ) =
√

1

2ωn

[
aλn(kT ) + a

†
λn(−kT )

]
(5)
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where ω2
n = k2

T + k2
z with kz = πn/L. The creation and annihilation operators now have the

standard commutator

[aλn(kT ), aλ′n′(k′
T )] = δλλ′δnn′(2π)d−1δ(kT − k′

T ). (6)

However, the longitudinal component

ALn(kT ) =
√

1

2ωn

(
ωn

kz

) [
aLn(kT ) + a

†
Ln(−kT )

]
(7)

contains an extra factor when the corresponding creation and annihilation operators have the
same canonical commutator (6). The full field operator (4) is then expressed in terms of these
new operators corresponding to definite polarization states.

The field fluctuations between the two plates can now easily be calculated. As a simple
example, consider Ez = −∂z	

−1∂j Ȧj . If we isolate the mode with quantum numbers (n, kT ),
we find the operator

	−1∂j Ȧj =
√

2

L

√
1

2ωn

(ikj )(−iωn)

ω2
n

[
aλneλj +

(
ωn

kz

)
aLneLj

]
eikT ·xT cos

(nπz

L

)
+ H.c. (8)

acting on the vacuum state. Here we have used that 	 gives k2
T + k2

z = ω2
n in momentum

space. We see that the transverse modes will not contribute here since they satisfy the
orthogonality condition eλ · kT = 0. However, for the longitudinal mode we have instead
eL · kT = kT and it will give a non-zero contribution. The derivative ∂z gives a factor kz and
cos(nπz/L) → sin(nπz/L). For this mode alone we thus get the fluctuation〈

E2
z

〉∣∣
n,kT

= 2

L

1

2ωn

k2
T sin2 nπz

L
(9)

Including all the modes, we thus have for the full fluctuation of this electric field component〈
E2

z

〉 = 1

L

∞∑
n=1

∫
dd−1kT

(2π)d−1

[
ωn − k2

z

ωn

]
sin2 nπz

L
(10)

when we write k2
T = ω2

n − k2
z . For the other components we similarly find

〈
E2

i

〉 = 1

L

∞∑
n=1

∫
dd−1kT

(2π)d−1

[
ωn(d − 2) +

k2
z

ωn

]
cos2 nπz

L
(11)

where there is an implied sum over the transverse index i. The magnetic field fluctuations can
be obtained the same way and become

〈
B2

iz

〉 = 1

L

∞∑
n=1

∫
dd−1kT

(2π)d−1

[
ωn +

k2
z

ωn

(d − 2)

]
sin2 nπz

L
(12)

〈
B2

i<j

〉 = 1

L

∞∑
n=1

∫
dd−1kT

(2π)d−1

[
ωn(d − 2) − k2

z

ωn

(d − 2)

]
cos2 nπz

L
(13)

when we again sum over the indices i and j . We have also confirmed these results by
performing the same calculations in Coulomb gauge instead of axial gauge.

Using now a combination of dimensional and zeta-function regularization as previously
used when D = 4 [7], we can write the result in the form

1

2L

∞∑
n=1

∫
dd−1kT

(2π)d−1

(
1 ± cos

2nπz

L

){
ωn

k2
z

/
ωn

}

= − �(D/2)

(4π)D/2LD

[
ζR(D) ± 1

2
fD(z/L)

] {
1

D − 1

}
. (14)
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Here ζR(D) is the Riemann zeta-function while fD(z/L) depends on the distance z from the
plates. When the spacetime dimension D is even, it can be written in the compact form

fD(z/L) = πD

�(D)

(
− d

dθ

)D−1

cot θ (D = even) (15)

where θ = πz/L. But when D is odd, no such closed expression is easily derived. However,
using a different regularization based on the corresponding point-split Green functions, one
finds in general [8]

fD(z/L) =
∞∑

j=−∞

1

|j + z/L|D = ζH (D, z/L) + ζH (D, 1 − z/L) (16)

where ζH (D, z/L) is the Hurwitz zeta-function. When D is even, this can be shown to agree
with (15).

The regularized fluctuations of the electric field normal to the plates thus become〈
E2

z

〉 = (D − 2)�(D/2)

(4π)D/2LD

[
ζR(D) − 1

2
fD(z/L)

]
(17)

while for the transverse components we find〈
E2

i

〉 = −2
(D − 2)�(D/2)

(4π)D/2LD

[
ζR(D) +

1

2
fD(z/L)

]
. (18)

For the magnetic fluctuations we similarly have〈
B2

iz

〉 = −(D − 2)
(D − 2)�(D/2)

(4π)D/2LD

[
ζR(D) − 1

2
fD(z/L)

]
(19)

and 〈
B2

i<j

〉 = (D − 3)
(D − 2)�(D/2)

(4π)D/2LD

[
ζR(D) +

1

2
fD(z/L)

]
. (20)

Note again that in these expressions we have summed over the transverse indices i and j , each
taking D − 2 different values. All these correlators are seen to diverge near the plates z → 0
or z → L where the function fD(z/L) diverges. This is the same phenomenon which has
previously been seen in D = 4 dimensions [3].

The pressure between the plates due to these fluctuations is defined by P = 〈Tzz〉. From
(1) we have Tzz = B2

iz − E2
z + L where now

〈L〉 = −1

2
(D − 1)

(D − 2)�(D/2)

(4π)D/2LD
fD(z/L). (21)

Together with the values for
〈
E2

z

〉
and

〈
B2

iz

〉
from above, the z-dependence from the function

fD(z/L) cancels out in the pressure and gives the expected value (2).
So far there are no inconsistencies in the obtained results. But when we now calculate the

energy density E = 〈T00〉 between the plates, with T00 = E2
i + E2

z − L, we obtain

E = − (D − 2)�(D/2)

(4π)D/2LD
[ζR(D) − (D/2 − 2)fD(z/L)] . (22)

The z-dependence in the last term is non-zero when D > 4 and makes the energy density
diverge like z−D with distance z from the plates. As a result, the total energy of the system is
infinite, a result which seems to be impossible to reconcile with the finite Casimir force (2). In
fact, (2) corresponds to having a constant energy density equal to the first term in (22). This
apparent inconsistency has been verified in a different approach based on Green’s function
methods [8].
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It is tempting to explain this problem by the imposed boundary conditions. We have
used the MIT boundary condition which is equivalent to letting the electromagnetic vector
potential satisfy Neumann boundary conditions in the axial gauge. Had we instead imposed
metallic boundary conditions, equivalent to Dirichlet boundary conditions for the vector
potential in the axial gauge, the only change in the above results would be the replacement
of the mode functions cos(nπz/L) with sin(nπz/L) in (4) so that fD → −fD in the above
results. Needless to say, the problem would remain. Only for periodic boundary conditions,
as for finite temperature, would the disturbing term be absent [9]. But this is not necessarily
satisfying from a physical point of view. A more mathematical discussion of such divergences
near confining boundaries has been initiated by Fulling but here only scalar fields are
considered [10].

A physical explanation of the above conumdrum becomes apparent when we take the
limit L → ∞ and thus consider the quantum fluctuations around a single plate. From (22) we
then find the energy density

E1 = (D − 2)(D/2 − 2)
�(D/2)

(4π)D/2|z|D (23)

which is non-zero on both sides of the plate and diverges when we approach it. This situation
is analogous to the diverging energy density surrounding a pointlike electron. It is intrinsic to
a single plate and should not contribute to the interaction between the plates induced by the
same vacuum fluctuations. To see the connection with the Casimir force, we should subtract
the self-energy (23) for both plates from the full energy density (22), taking into account both
sides of each plate. We thus obtain the interaction energy density

Ẽ = −(D − 2)
�(D/2)

(4π)D/2LD
×




(D/2 − 2)(L/(L − z))D for z < 0,
ζR(D) − (D/2 − 2)f̃ D(z/L) for 0 < z < L,
(D/2 − 2)(L/z)D for z > L,

(24)

where now

f̃ D(z/L) = ζH (D, 1 + z/L) + ζH (D, 2 − z/L). (25)

It is seen to be finite everywhere, even at the plates. When integrating over the full volume,
the z-dependent terms cancel out as follows from∫ 0

−∞

dx

(1 − x)D
−

∫ 1

0
dxf̃ (x) +

∫ ∞

1

dx

xD

= 2

D − 1

[
1 +

∞∑
n=0

(
1

(n + 2)D−1
− 1

(n + 1)D−1

)]
= 0. (26)

Only the z-independent term in (24) contributes and agrees perfectly with the total energy
corresponding to the Casimir force.

A similar and somewhat simpler system is the Casimir energy induced by a massless
scalar field in the same geometry. One will then find a very similar result for the energy
density as obtained here [8]. It diverges near the plates for all spacetime dimensions D > 2.
Again this can be attributed to a divergent self-energy of each plate. However, when D = 2
there are no such divergences and zero self-energy. But this is also the dimension in which the
scalar theory has conformal invariance. In higher dimensions D > 2 it is possible to make the
scalar theory retain this invariance by adding a conformal term. The resulting, improved
energy–momentum tensor [12] then contains an additional piece discovered by Huggins
[13] and makes it traceless. Including the Huggins term, the divergent part of the energy
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density corresponding to the last term in (22) drops out as was first noticed by de Witt when
D = 4 [11].

For the electromagnetic field we have used the canonical energy–momentum tensor (1)
which has the trace T µ

µ = (4−D)L. It is zero for D = 4 which reflects the well-known fact that
the Maxwell theory is then conformally invariant. There are then no divergences in the Casimir
energy. Thus it is natural to relate the apparent inconsistency in the electromagnetic Casimir
energy when D > 4 to the lack of conformal invariance. It does not seem to be possible to
construct an improved energy–momentum tensor in this case because gauge invariance forbids
the existence of any corresponding local Huggins term. From this point of view the divergent,
electromagnetic self-energy can therefore not be removed. For this to be done, one needs a
more realistic description of the boundary plates along the lines considered by others [4].
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